
CSCI E-93 MEMORY SUBSYSTEM
 FOR ALTERA/TERASIC DE2-70 AND DE2-115 DEVELOPMENT BOARDS
Last revised: 11/18/2014

MEMORY MAPPED I/O

The following is a summary of the available memory-mapped I/O registers and their specific function. Addresses are
specified as full 21-bit addresses. The memory implementation is little-endian, so for memory operations on multi-byte
words, the relevant data (i.e., the status bits or character code) will always be found in the low-order byte. In all
references, bits are numbered with bit 0 being the least significant bit in the byte or word, regardless of the word size.

Address Function
00FF00 I/O Control Register

Bit
Decimal

Value On Read indicates: Write ‘1’ causes:

0 1 Serial Input Ready Serial Input Flush
1 2 Serial Output Ready Serial Output Flush
2 4 PS/2 Input Ready PS/2 Input Flush
3 8 LCD Output Ready LCD Output Flush

 All other bits will be ‘0’ when read and have no effect when written with a ‘1’, but code should not depend on
the values of any other bits when read and should write all other bits as ‘0’.

00FF04 Read: Serial (RS-232) character input buffer
 Write: Serial (RS-232) character output buffer

Notes

 All serial communication occurs at 9600 Baud/No Parity/8 Data Bits/1 Stop Bit/No Flow Control. This is
not configurable.

 All serial I/O is “raw”—no specific line-termination convention (i.e., CR, LF, CR/LF) is enforced. The
specific line-termination character(s) you receive are determined by the settings of the terminal
emulator you are using, and the line-termination character(s) the terminal emulator receives are
determined solely by the characters your program actually sends.

When you press “enter” in the terminal emulator, many terminal emulators by default will send a single
CR [0x0d] character (at least on Windows; *nix may differ and send a single LF [0x0a]). However many
terminal emulator programs allow you to modify this behavior.

When receiving characters, terminal emulators by default will handle CR and LF literally, meaning that a
CR will return the cursor to the beginning of the current line, and an LF will advance the cursor to the
next line. To get “expected” newline behavior in this mode you will need to send a CR/LF pair. However
most emulators can be configured to adjust this handling in various ways, for example, to translate a
single CR to a CR/LF pair.

Clearly, when writing your programs you will need to know the expected configuration and behavior of
the terminal emulator you will be using.

00FF08 Read: PS/2 Keyboard character input buffer
 Write: LCD Character Output buffer

Notes:

 The PS/2 keyboard is only partially supported. All the alphanumeric and many common non-
alphanumeric keys (e.g., Tab, Enter, Backspace) are supported. The shift key is supported, however other
modifier keys (Ctrl, Alt, Caps Lock) are not. “Extended” keys such as the Function keys and cursor control
keys are also unsupported. Pressing an unsupported key will typically cause some sequence of “junk”
characters to be transmitted. (For those familiar with the PS/2 keyboard protocol: support essentially
includes most of the keys with a single-byte make code in Keyboard Scan Codes “Set 2.” Keys with multi-
byte make codes are not supported.)

 Pressing “Enter” on the PS/2 keyboard will cause a single CR [0x0d] character to be transmitted. This is
not configurable.

 The LCD display is implemented as a very simple line-oriented terminal. It provides 2 lines of 16
characters each. The first character written appears in the first position on the first line; subsequent
characters appear in successive positions, eventually wrapping to the beginning of the second line. When
the second line is complete, the display clears and output wraps back to the beginning of the first line.

 The LCD handles CR and LF characters much as a default terminal emulator does: a CR [0x0d] character
causes the cursor to move to the beginning of the current line, and a LF [0x0a] character advances the
cursor to the next line (without changing its column position). A backspace character moves the cursor
backwards one position (but does not clear the character that was there).

MEMORY CONTROLLER HARDWARE INTERFACE

The memory controller is implemented in an entity named memory_controller defined in the VHDL library cscie93. Your
top-level entity will need to instantiate and port map this entity as described below under “Your top-level entity.” The
following table describes the ports on the memory_controller entity1. Note that from your perspective, any ports of
direction “buffer” should be regarded as outputs from the memory controller entity. Note also that 16-bit reads or
writes must be made only to word-aligned (i.e., even) addresses, and 32-bit reads or writes must be made only to
double-word-aligned addresses (i.e., the two low-order address bits must be 0). The results of performing a read or
write to an address that is not appropriately aligned are undefined.

Bolded signal names indicate signals that you are likely to care about.

Port Name

Direction

Type

Description

clk50mhz in std_logic The DE2 50MHz clock. This port must be mapped to a
signal connected to the appropriate pin.

mem_addr in std_logic_vector(20 downto 0) The mem_addr signal of the processor-memory
interface.

mem_data_write in std_logic_vector(31 downto 0) The mem_data_write signal of the processor-memory
interface.

For 16-bit and 32-bit operations, the individual bytes
will be written in little-endian order.

mem_rw in std_logic The mem_rw signal of the processor-memory
interface.

mem_sixteenbit in std_logic The mem_sixteenbit signal of the processor-memory

1 The table presented here lists the signals used on the DE2-70. The signals used on the DE2-115 are substantially similar, but there
are some minor differences in the set of signals related to the SRAM. None of these are signals you will need to use in any way, and
these differences are accurately reflected in the VHDL skeleton code included later in this document.

interface.

This signal is superseded by the mem_thirtytwobit
signal. If both are asserted, the access mode will be 32-
bit.

Important: 16-bit accesses must be made only on
word-aligned (i.e., even) addresses. The result of
performing a 16-bit read or write on an unaligned (i.e.,
odd) address is undefined.

mem_thirtytwobit In std_logic The mem_thirtytwobit signal of the processor-memory
interface.

This signal supersedes the mem_sixteenbit control
signal. If both are asserted, the access mode will be 32-
bit.

Important: 32-bit accesses must be made only on
double-word-aligned (i.e., the two low-order address
bits must be 0) addresses. The result of performing a
32-bit read or write on an unaligned (e.g., odd) address
is undefined.

mem_addressready in std_logic The mem_addressready signal of the processor-
memory interface.

mem_reset in std_logic An active-high reset signal that can be used to reset
the memory controller to its initial state.

ps2_clk in std_logic The clock signal for the DE2 PS/2 keyboard interface.
This port must be mapped to a signal connected to the
appropriate pin.

ps2_data in std_logic The data signal for the DE2 PS/2 keyboard interface.
This port must be mapped to a signal connected to the
appropriate pin.

clock_hold in std_logic Asserting this signal will stop the clock signals
generated by the memory controller.

clock_step in std_logic While the clock_hold signal is asserted, a rising edge
on this signal will cause the generated clocks to run for
a single full clock cycle. This signal has no effect when
the clock_hold signal is not asserted.

clock_divide_limit in std_logic_vector(19 downto 0) An optional 20-bit counter limit that can be used to
slow down the effective rate of the generated clocks. If
this value is non-zero, the generated clocks will be
gated to zero for this number of cycles in between
clock pulses. If this value is zero (or left unmapped),
the clocks are not gated.

mem_suspend in std_logic If this optional signal is asserted, the memory
subsystem and its clocks will continue running, but it
will not respond to any memory requests.

lcd_en out std_logic Part of the interface with the LCD display. This port
must be mapped to a signal connected to the
appropriate pin.

lcd_on out std_logic Part of the interface with the LCD display. This port
must be mapped to a signal connected to the
appropriate pin.

lcd_rs out std_logic Part of the interface with the LCD display. This port
must be mapped to a signal connected to the
appropriate pin.

lcd_rw out std_logic Part of the interface with the LCD display. This port
must be mapped to a signal connected to the

appropriate pin.

lcd_db inout std_logic_vector(7 downto 0) Part of the interface with the LCD display. This port
must be mapped to a signal connected to the
appropriate pin.

mem_data_read out std_logic_vector(31 downto 0) The mem_data_read signal of the processor-memory
interface.

For 16-bit and 32-bit operations, the individual bytes
are read in little-endian order.

mem_dataready_inv out std_logic The mem_dataready_inv signal of the processor-
memory interface.

mem_ready out std_logic Diagnostic signal, should generally not be used.
Indicates when the memory subsystem is waiting for a
new memory request.

sysclk1 out std_logic The generated system clock. You should use this clock
as your main system clock. It is a 25MHz clock on a
global clock routing net. This clock responds to the
clock_hold, clock_step and clock_divide_limit signals
described above.

sysclk2 out std_logic A secondary system clock, 180° out-of-phase with
sysclk1. Like sysclk1, this clock responds to the
clock_hold, clock_step and clock_divide_limit signals
described above.

rs232_rxd in std_logic Part of the interface with the RS232 serial port. This
port must be mapped to a signal connected to the
appropriate pin.

rs232_txd out std_logic Part of the interface with the RS232 serial port. This
port must be mapped to a signal connected to the
appropriate pin.

rs232_cts out std_logic Part of the interface with the RS232 serial port. This
port must be mapped to a signal connected to the
appropriate pin.

sram_clk out std_logic Part of the interface with the off-chip SSRAM memory
chip. This port must be mapped to a signal connected
to the appropriate pin.

sram_dq inout std_logic_vector (31 downto 0) Part of the interface with the off-chip SSRAM memory
chip. This port must be mapped to a signal connected
to the appropriate pin.

sram_addr out std_logic_vector(18 downto 0) Part of the interface with the off-chip SSRAM memory
chip. This port must be mapped to a signal connected
to the appropriate pin.

sram_adsc_N out std_logic Part of the interface with the off-chip SSRAM memory
chip. This port must be mapped to a signal connected
to the appropriate pin.

sram_adsp_N out std_logic Part of the interface with the off-chip SSRAM memory
chip. This port must be mapped to a signal connected
to the appropriate pin.

sram_adv_N out std_logic Part of the interface with the off-chip SSRAM memory
chip. This port must be mapped to a signal connected
to the appropriate pin.

sram_ce1_N out std_logic Part of the interface with the off-chip SSRAM memory
chip. This port must be mapped to a signal connected
to the appropriate pin.

sram_ce2 out std_logic Part of the interface with the off-chip SSRAM memory
chip. This port must be mapped to a signal connected
to the appropriate pin.

sram_ce3_N out std_logic Part of the interface with the off-chip SSRAM memory
chip. This port must be mapped to a signal connected

to the appropriate pin.

sram_gw_N out std_logic Part of the interface with the off-chip SSRAM memory
chip. This port must be mapped to a signal connected
to the appropriate pin.

sram_oe_N out std_logic Part of the interface with the off-chip SSRAM memory
chip. This port must be mapped to a signal connected
to the appropriate pin.

sram_we_N out std_logic Part of the interface with the off-chip SSRAM memory
chip. This port must be mapped to a signal connected
to the appropriate pin.

sram_be_N out std_logic_vector(3 downto 0) Part of the interface with the off-chip SSRAM memory
chip. This port must be mapped to a signal connected
to the appropriate pin.

serial_character_ready out std_logic Asserted when there is at least one character ready to
be read from the serial port character buffer. Can be
used to drive a level-sensitive interrupt line.

ps2_character_ready out std_logic Asserted when there is at least one character ready to
be read from the PS/2 keyboard character buffer. Can
be used to drive a level-sensitive interrupt line.

fsmStateCode out std_logic_vector(4 downto 0) Diagnostic signal, should be ignored.

ps2KbStateCode out std_logic_vector(3 downto 0) Diagnostic signal, should be ignored.

serial_out_fifo_full buffer std_logic Diagnostic signal, should be ignored.

serial_out_fifo_empty buffer std_logic Diagnostic signal, should be ignored.

lcd_fifo_full buffer std_logic Diagnostic signal, should be ignored.

lcd_fifo_empty buffer std_logic Diagnostic signal, should be ignored.

YOUR QUARTUS II PROJECT

Configuring your Quartus II Project
You will receive from us a set of files that implement the memory subsystem. One you are ready to begin using the
memory subsystem in your project, you will need to include all of our VHDL files in your project. You should keep all of
our files in a subdirectory, rather than comingling them in your main project directory with your own files. There is also
a file named cscie93.sdc, this file specified some clock and timing information for the Altera TimeQuest Timing Analyzer.
To enable an accurate timing analysis, and avoid warnings about undefined clocks, you should include this file in your
project as well.

DE2-70 Only
Once you have included our VHDL files in your project, in order to successfully compile your project you will need to
add the following to your project’s .qsf file:

set_parameter -name CYCLONEII_SAFE_WRITE "\"RESTRUCTURE\""

This line can be added anywhere among the existing set_global_assignment lines. Without this line, your compilation
will fail with memory configuration errors from the memory compiler.

Other suggestions
Although not required, there are several project settings that may improve your project’s ability to satisfy timing
requirements (at the expense of longer compilation times). If you find you are not meeting timing requirements, you
may consider changing the following (both are available in the Settings dialog, in the “Fitter Settings” section, shown
below):

 Make sure “Optimize hold timing” is enabled, and select “All Paths” instead of the default setting of “I/O Paths
and Minimum TPD Paths”

 Change the “Fitter effort” setting to “Standard Fit (highest effort)

Your top-level entity
The following is a skeleton of what your top-level VHDL entity should look like. Your top-level entity must define the
ports that are listed; because these ports are used to connect the memory controller to the various devices on the DE2
board that it uses, these ports must be assigned to specific pins. These assignments are provided to you as chip_pin
attribute assignments in the top-level entity’s architecture shells included below; please be sure you include all of these
chip assignments in your top-level entity’s architecture.

Important The DE2-70 and DE2-115 have different and incompatible pin assignments. Because of this, two separate
top-level “skeleton s” are included below, and it is essential that you use the one appropriate for the specific DE2
board you are using. Otherwise, your design will not work, and you could risk damaging some of the on-board devices.

In addition to these required ports, your top-level entity may of course also include any additional ports that you require
(e.g., to enable it to access push-buttons, slide switches, LED’s and 7-segment displays). Pin assignments are not
provided for these devices, you will need to add those yourself as needed.

In your top-level entity’s architecture, you will need to instantiate one instance of the cscie93.memory_controller
entity. Some of the ports on this entity must be mapped to the required top-level ports, as shown below. The remaining
ports should be mapped as appropriate to ports on your CPU entity, which you will also instantiate in this architecture.
Because the memory_controller entity defines a large number of ports, including some diagnostic signals which are not
included in the sample VHDL which follows (and which do not need to be port mapped), you are strongly encouraged to
do the port mapping using named associations (as shown) rather than positional associations.

DE2-70 Top-Level Shell File

library ieee;

use ieee.std_logic_1164.all;

library cscie93;

-- This file should be used for the DE2-70 board ONLY

entity YOUR_TOP_LEVEL_ENTITY_FOR_DE2_70 is

 port (

 -- CLOCK

 clk50mhz : in std_logic;

 PS/2 PORT

 ps2_clk : in std_logic;

 ps2_data : in std_logic;

 -- LCD

 lcd_en : out std_logic;

 lcd_on : out std_logic;

 lcd_rs : out std_logic;

 lcd_rw : out std_logic;

 lcd_db : inout std_logic_vector(7 downto 0);

 -- RS232

 rs232_rxd : in std_logic;

 rs232_txd : out std_logic;

 rs232_cts : out std_logic;

 -- SSRAM interface

 sram_clk : out std_logic;

 sram_dq : inout std_logic_vector (31 downto 0);

 sram_addr : out std_logic_vector(18 downto 0);

 sram_adsc_N : out std_logic;

 sram_adsp_N : out std_logic;

 sram_adv_N : out std_logic;

 sram_ce1_N : out std_logic;

 sram_ce2 : out std_logic;

 sram_ce3_N : out std_logic;

 sram_gw_N : out std_logic;

 sram_oe_N : out std_logic;

 sram_we_N : out std_logic;

 sram_be_N : out std_logic_vector(3 downto 0)

);

end;

architecture default of YOUR_TOP_LEVEL_ENTITY is

 attribute chip_pin : string;

 attribute chip_pin of clk50mhz : signal is "AD15";

 attribute chip_pin of ps2_clk : signal is "F24";

 attribute chip_pin of ps2_data : signal is "E24";

 attribute chip_pin of lcd_on : signal is "F1";

 attribute chip_pin of lcd_en : signal is "E2";

 attribute chip_pin of lcd_rw : signal is "F3";

 attribute chip_pin of lcd_rs : signal is "F2";

 attribute chip_pin of lcd_db : signal is "B2,C3,C2,C1,D3,D2,E3,E1";

 attribute chip_pin of rs232_rxd : signal is "D21";

 attribute chip_pin of rs232_txd : signal is "E21";

 attribute chip_pin of rs232_cts : signal is "G22";

 attribute chip_pin of sram_dq : signal is

"AK8,AJ8,AK7,AK12,AH13,AJ13,AJ14,AK14,AJ16,AJ15,AH15,AJ22,AK22,AJ21,AK21,AJ20,AK23,AJ19,AK19,AH18,AJ18,AH17,AJ17,AK17,AH16,AJ12,AH12,

AK11,AJ11,AK10,AJ10,AH10";

 attribute chip_pin of sram_clk : signal is "AD7";

 attribute chip_pin of sram_addr : signal is

"AF11,AE11,AG20,AF20,AC16,AF15,AE15,AG14,AF14,AE13,AD13,AG12,AE12,AG5,AG6,AG7,AH7,AF8,AG8";

 attribute chip_pin of sram_adsc_N : signal is "AG17";

 attribute chip_pin of sram_adsp_N : signal is "AC18";

 attribute chip_pin of sram_adv_N : signal is "AD16";

 attribute chip_pin of sram_ce1_N : signal is "AH19";

 attribute chip_pin of sram_ce2 : signal is "AG19";

 attribute chip_pin of sram_ce3_N : signal is "AD22";

 attribute chip_pin of sram_gw_N : signal is "AG18";

 attribute chip_pin of sram_oe_N : signal is "AD18";

 attribute chip_pin of sram_we_N : signal is "AF18";

 attribute chip_pin of sram_be_N : signal is "AH20 , AD20,AC20, AC21";

begin

 mem : cscie93.memory_controller port map (

 clk50mhz => clk50mhz,

 mem_addr => your-signal-here,

 mem_data_write => your-signal-here,

 mem_rw => your-signal-here,

 mem_sixteenbit => your-signal-here,

 mem_thirtytwobit => your-signal-here,

 mem_addressready => your-signal-here,

 mem_reset => your-signal-here,

 ps2_clk => ps2_clk,

 ps2_data => ps2_data,

 clock_hold => your-signal-here,

 clock_step => your-signal-here,

 clock_divide_limit => your-signal-here,

 mem_suspend => your-signal-here,

 lcd_en => lcd_en,

 lcd_on => lcd_on,

 lcd_rs => lcd_rs,

 lcd_rw=> lcd_rw,

 lcd_db=> lcd_db,

 mem_data_read => your-signal-here,

 mem_dataready_inv => your-signal-here,

 sysclk1 => your-signal-here,

 sysclk2 => your-signal-here,

 rs232_rxd => rs232_rxd,

 rs232_txd => rs232_txd,

 rs232_cts => rs232_cts,

 sram_clk => sram_clk,

 sram_dq => sram_dq,

 sram_addr => sram_addr,

 sram_adsc_N => sram_adsc_N,

 sram_adsp_N => sram_adsp_N,

 sram_adv_N => sram_adv_N,

 sram_ce1_N => sram_ce1_N,

 sram_ce2 => sram_ce2,

 sram_ce3_N => sram_ce3_N,

 sram_gw_N => sram_gw_N,

 sram_oe_N => sram_oe_N,

 sram_we_N => sram_we_N,

 sram_be_N => sram_be_N,

 serial_character_ready => your-signal-here,

 ps2_character_ready => your-signal-here,

);

-- Instantiate your CPU entity here!

cpu : entity work.your_cpu port map (

 . . .

);

end;

DE2-70 Entity Declaration for the memory_controller entity

entity memory_controller is

 port (

 clk50mhz : in std_logic;

 mem_addr : in std_logic_vector(20 downto 0);

 mem_data_write : in std_logic_vector(31 downto 0);

 mem_rw : in std_logic;

 mem_sixteenbit : in std_logic;

 mem_thirtytwobit : in std_logic;

 mem_addressready : in std_logic;

 mem_reset : in std_logic;

 ps2_clk : in std_logic;

 ps2_data : in std_logic;

 clock_hold : in std_logic;

 clock_step : in std_logic;

 clock_divide_limit : in std_logic_vector(19 downto 0) := (others => '0');

 mem_suspend : in std_logic;

 lcd_en : out std_logic;

 lcd_on : out std_logic;

 lcd_rs : out std_logic;

 lcd_rw : out std_logic;

 lcd_db : inout std_logic_vector(7 downto 0);

 mem_data_read : out std_logic_vector(31 downto 0);

 mem_dataready_inv : out std_logic;

 mem_ready : out std_logic;

 sysclk1 : out std_logic;

 sysclk2 : out std_logic;

 rs232_rxd : in std_logic;

 rs232_txd : out std_logic;

 rs232_cts : out std_logic;

 -- SSRAM interface

 sram_clk : out std_logic;

 sram_dq : inout std_logic_vector (31 downto 0);

 sram_addr : out std_logic_vector(18 downto 0);

 sram_adsc_N : out std_logic;

 sram_adsp_N : out std_logic;

 sram_adv_N : out std_logic;

 sram_ce1_N : out std_logic;

 sram_ce2 : out std_logic;

 sram_ce3_N : out std_logic;

 sram_gw_N : out std_logic;

 sram_oe_N : out std_logic;

 sram_we_N : out std_logic;

 sram_be_N : out std_logic_vector(3 downto 0);

 -- usable as interrupts for char ready

 serial_character_ready : out std_logic;

 ps2_character_ready : out std_logic;

 --diagnostics

 fsmStateCode : out std_logic_vector(4 downto 0);

 ps2KbStateCode : out std_logic_vector(3 downto 0);

 serial_out_fifo_full : buffer std_logic;

 serial_out_fifo_empty : buffer std_logic;

 lcd_fifo_full : buffer std_logic;

 lcd_fifo_empty : buffer std_logic

);

end;

DE2-115 Top-Level Shell File

library ieee;

use ieee.std_logic_1164.all;

library cscie93;

-- This file should be used for the DE2-115 board ONLY

entity YOUR_TOP_LEVEL_ENTITY_FOR_DE2_115 is

 port (

 -- CLOCK

 clk50mhz : in std_logic;

 -- PS/2 PORT

 ps2_clk : in std_logic;

 ps2_data : in std_logic;

 -- LCD

 lcd_en : out std_logic;

 lcd_on : out std_logic;

 lcd_rs : out std_logic;

 lcd_rw : out std_logic;

 lcd_db : inout std_logic_vector(7 downto 0);

 -- RS232

 rs232_rxd : in std_logic;

 rs232_txd : out std_logic;

 rs232_cts : out std_logic;

 -- SSRAM interface

 sram_dq : inout std_logic_vector (15 downto 0);

 sram_addr : out std_logic_vector(19 downto 0);

 sram_ce_N : out std_logic;

 sram_oe_N : out std_logic;

 sram_we_N : out std_logic;

 sram_ub_N : out std_logic;

 sram_lb_N : out std_logic

);

end;

architecture default of YOUR_TOP_LEVEL_ENTITY is

 attribute chip_pin : string;

 attribute chip_pin of clk50mhz : signal is "Y2";

 attribute chip_pin of ps2_clk : signal is "G6";

 attribute chip_pin of ps2_data : signal is "H5";

 attribute chip_pin of lcd_on : signal is "L5";

 attribute chip_pin of lcd_en : signal is "L4";

 attribute chip_pin of lcd_rw : signal is "M1";

 attribute chip_pin of lcd_rs : signal is "M2";

 attribute chip_pin of lcd_db : signal is "M5,M3,K2,K1,K7,L2,L1,L3";

 attribute chip_pin of rs232_rxd : signal is "G12";

 attribute chip_pin of rs232_txd : signal is "G9";

 attribute chip_pin of rs232_cts : signal is "G14";

 attribute chip_pin of sram_dq : signal is "AG3,AF3,AE4,AE3,AE1,AE2,AD2,AD1,AF7,AH6,AG6,AF6,AH4,AG4,AF4,AH3";

 attribute chip_pin of sram_addr : signal is "T8,AB8,AB9,AC11,AB11,AA4,AC3,AB4, AD3, AF2, T7, AF5, AC5, AB5, AE6, AB6, AC7, AE7,

AD7, AB7";

 attribute chip_pin of sram_ce_N : signal is "AF8";

 attribute chip_pin of sram_oe_N : signal is "AD5";

 attribute chip_pin of sram_we_N : signal is "AE8";

 attribute chip_pin of sram_ub_N : signal is "AC4";

 attribute chip_pin of sram_lb_N : signal is "AD4";

begin

 mem : cscie93.memory_controller port map (

 clk50mhz => clk50mhz,

 mem_addr => your-signal-here,

 mem_data_write => your-signal-here,

 mem_rw => your-signal-here,

 mem_sixteenbit => your-signal-here,

 mem_thirtytwobit => your-signal-here,

 mem_addressready => your-signal-here,

 mem_reset => your-signal-here,

 ps2_clk => ps2_clk,

 ps2_data => ps2_data,

 clock_hold => your-signal-here,

 clock_step => your-signal-here,

 clock_divide_limit => your-signal-here,

 mem_suspend => your-signal-here,

 lcd_en => lcd_en,

 lcd_on => lcd_on,

 lcd_rs => lcd_rs,

 lcd_rw => lcd_rw,

 lcd_db => lcd_db,

 mem_data_read => your-signal-here,

 mem_dataready_inv => your-signal-here,

 sysclk1 => your-signal-here,

 sysclk2 => your-signal-here,

 rs232_rxd => rs232_rxd,

 rs232_txd => rs232_txd,

 rs232_cts => rs232_cts,

 sram_dq => sram_dq,

 sram_addr => sram_addr,

 sram_ce_N => sram_ce_N,

 sram_oe_N => sram_oe_N,

 sram_we_N => sram_we_N,

 sram_ub_N => sram_ub_N,

 sram_lb_N => sram_lb_N,

 serial_character_ready => your-signal-here,

 ps2_character_ready => your-signal-here,

);

-- Instantiate your CPU entity here!

cpu : entity work.your_cpu port map (

 . . .

);

end;

DE2-115 Entity Declaration for the memory_controller entity

entity memory_controller is

 port (

 clk50mhz : in std_logic;

 mem_addr : in std_logic_vector(20 downto 0);

 mem_data_write : in std_logic_vector(31 downto 0);

 mem_rw : in std_logic;

 mem_sixteenbit : in std_logic;

 mem_thirtytwobit : in std_logic;

 mem_addressready : in std_logic;

 mem_reset : in std_logic;

 ps2_clk : in std_logic;

 ps2_data : in std_logic;

 clock_hold : in std_logic;

 clock_step : in std_logic;

 clock_divide_limit : in std_logic_vector(19 downto 0) := (others => '0');

 mem_suspend : in std_logic;

 lcd_en : out std_logic;

 lcd_on : out std_logic;

 lcd_rs : out std_logic;

 lcd_rw : out std_logic;

 lcd_db : inout std_logic_vector(7 downto 0);

 mem_data_read : out std_logic_vector(31 downto 0);

 mem_dataready_inv : out std_logic;

 mem_ready : out std_logic;

 sysclk1 : out std_logic;

 sysclk2 : out std_logic;

 rs232_rxd : in std_logic;

 rs232_txd : out std_logic;

 rs232_cts : out std_logic;

 -- SSRAM interface

 sram_dq : inout std_logic_vector (15 downto 0);

 sram_addr : out std_logic_vector(19 downto 0);

 sram_ce_N : out std_logic;

 sram_oe_N : out std_logic;

 sram_we_N : out std_logic;

 sram_ub_N : out std_logic;

 sram_lb_N : out std_logic;

 -- usable as interrupts for char ready

 serial_character_ready : out std_logic;

 ps2_character_ready : out std_logic;

 --diagnostics

 fsmStateCode : out std_logic_vector(5 downto 0);

 ps2KbStateCode : out std_logic_vector(3 downto 0);

 serial_out_fifo_full : buffer std_logic;

 serial_out_fifo_empty : buffer std_logic;

 lcd_fifo_full : buffer std_logic;

 lcd_fifo_empty : buffer std_logic;

 dbg_lcd_ddram_addr : out std_logic_vector(7 downto 0)

);

end;

Known issues and limitations

The PS/2 keyboard is only partially supported, as detailed above.

The LCD character output can be occasionally unreliable, with a tendency to repeat and/or skip occasional characters at
certain clock rates. You are generally advised to use the serial input and output whenever possible.

